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Localization Stabilized by Noise 
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We present a model which describes a quantum two-state system interacting 
with the environment represented by stochastic noise. We show that coherent 
tunneling between the two states survives if the interaction with the environment 
is weak. On the contrary, a strong interaction destroys quantum coherence and 
the system randomly jumps from one state to the other. Moreover, the jump 
probability rate becomes extremely small for very strong noise. The model is 
relevant for understanding the quantum properties of some mesoscopic systems. 

KEY W O R D S :  Quantum tunneling; stochastic processes. 

The distinction between microsystems described by quantum mechanics 
and macrosystems described by classical mechanics has been for decades a 
paradigm of physics. Quantum behavior for large systems is obviously not 
theoretically impossible, but it was excluded by the a priori assumption 
that it was practically not detectable. In recent years a mesoscopic region 
of physics has become accessible to experiment. I~ 31 As a consequence, the 
problem has been revisited and the idea that a large system could have 
some quantum behavior has become popular. Typical and widely studied 
examples of these systems are superconducting rings with a "weak" junc- 
tion ~'2'41 crossed by a magnetic flux. These objects, under appropriate 
conditions, have only two possible configurations, and coherent tunneling 
between them is possible provided that the interaction with the environ- 
ment is not too strong. This is a crucial point. In fact, it turns out that the 
description of these new phenomena has to take carefully into account the 
interaction with the environment. 
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In this paper we present an extremely simplified model which can be 
solved exactly. The model describes a two-state system, such as a super- 
conducting ring, interacting with an environment represented by a kind of 
stochastic noise. When there is no interaction with the environment the 
system jumps from one state to the other periodically: this corresponds to 
typical quantum coherent tunneling. In this case the probability of being 
localized in the first or the second state oscillates periodically. We show 
that damped periodic oscillations of the localization probability survive if 
the interaction with the environment is sufficiently weak. In this situation 
the quantum tunneling from one state to the other is still coherent. On the 
contrary, a strong interaction destroys quantum coherence, and in fact 
the localization probability relaxes exponentially. One thus says that the 
system jumps from one state to the other randomly or, better, that tunnel- 
ing is not coherent. The phenomenon is indistinguishable from a classical 
stochastic process. Moreover, we surpi'isingly find that the rate of the 
exponential relaxation of the localization probability becomes extremely 
small for very strong noise. This indicates that a strong interaction with the 
environment has a stabilizing effect on the localization: not only has the 
quantum tunneling disappeared, but stochastic jumps are suppressed. 
Numerical evidence for this kind of stabilization has been also found by 
Grossmann et al., ~7~ who studied a bistable system in the framework of 
stochastic resonance.~8 j 

Our results can be qualitatively compared with those of Chakravarty 
and Leggett ~5~ and Leggett et al. 161 on a two-state system interacting with 
a dissipative environment described as a boson field. The average behavior 
of the localization probability in our model shows the same qualitative 
features. However, our model allows us to perform an explicit computation 
of fluctuations and correlations, which are absent in a purely dissipative 
system. 

Let us consider the time-dependent Hamiltonian 

H=c~a.,. + flq(t) a: (1) 

where a,. and a .  are Pauli matrices and ,7 is a given realization of a white 
noise [i.e., w ( t ) - S ' o ~ ( s ) d s  is a Brownian motion].  When f l=0 ,  this 
Hamiltonian produces coherent quantum tunneling of period rt/ct between 
the two eigenstates of a_ which have the same mean energy and represent 
the two "macroscopic" configurations of the system. When fl r 0 we intro- 
duce an interaction with the environment which randomly breaks in time 
the energy symmetry of the two configurations. 

The associated Schr6dinger equation is, by i to calculus, 

d ~  = - i ~ a , . ~  dt - ifla:cb d w -  �89 dt (2) 
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where 

is a two-component vector. I qs+l 2 is the probability of finding the system 
in the first macroscopic configuration, while Iqs_l z is that of finding it in 
the second one. It is easy to check that Eq. (2) corresponds to the unitary 
evolution ~ ( t ) =  U, , ( t )~(0)  associated to the Hamiltonian (1). 

We are now interested in the localization properties of the model. It is 
therefore convenient to introduce the vector x = ( x ,  y, z) defined as the 
mean value ( ~  a ~ )  of the quantum vector ~ with respect to the quantum 
state ~.  The third component z = 1~ + 12 - I ~ -  12 of this vector encodes the 
information about the localization (1r 12 + 1r 12 = 1). Starting from the 
Schr6dinger equation (2), we find that the vector x satisfies 

dx = A x dt + B x  dw (3) 

where 

and 

A = 

--2/8 0 0 / 
--2f122a O 2~ 

B =  0 

0 

The above stochastic equation is equivalent to the Schr6dinger equation 
and can be interpreted as a diffusion on a unitary sphere with radius fixed 
by the initial conditions, where for us I<a >l 2= x2+ y2+ z2= 1. 

From (3), taking the expectation value, we immediately obtain 

d~ 
- - = A ~  (4) 
dt 

This linear equation can be easily solved. When f12< 2 1~1 the solution is 

x( t ) = e -  2~2'x(0) 

y ( t )  = e-a2'l-y(O) cos(cot) + cl sin(cot)] (5) 

z ( t )  = e -a2'['z(O) cos(09t) + c2 sin(09t)] 

822/75/3-4-26 
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where 

o)= 1//4- 4call 1/2, c, = [ - f l 2 y ( o ) - 2 ~ z ( O ) ] / e ) ,  and 

c2 = E//2z-~ + 2c~y(O)]/~. 

Looking at the third component z(t), one realizes that in this region a 
quantum coherent behavior survives the noise. The localization probability 
is periodic with exponential damping: the system jumps from one state to 
the other almost periodicially. The damping factor, in fact, is a consequence 
of the accumulation of errors due to the deviations from the purely periodic 
behavior. The damping rate f12 increases with noise. 

When l/2 > 21c~ I the solution is purely exponential and it may be obtained 
from (5) with the substitutions cos(cot)--+cosh(cot), sin(~ot)--,sinh(e)t). 
In this strong-noise region the coherent behavior is completely destroyed 
since the localization probability relaxes exponentially. Therefore, the 
system jumps randomly from one state to the other, with probability rate 
//2__ I//4__ 4ct2l 1/2 which vanishes for very strong noise as 2ct2///2. 

Summarizing, we have damped oscillations for a weak interaction with 
the environment ( / /2<2 1~1) and incoherent relaxation for strong inter- 
action (f12 > 2 1~1 ), Chakravarty and Leggett 151 and Leggett et aL 16) consider 
a two-state system interacting with an environment described as a boson 
field. The resulting spin-boson model has a behavior which depends on 
the interaction properties encoded in a spectral function. While detailed 
comparison is not possible, since their model is much more complex then 
ours, it is astonishing that they find the same two qualitative behaviors: 
damped oscillations and incoherent relaxation. 

Our model in spite of its simplicity has the advantage of allowing an 
evaluation of fluctuations. The above expectation values of x(t), in fact, are 
not sufficient to describe the behavior of the system. We also need to com- 
pute the fluctuations of the localization probability and the correlation 
function. From the stochastic equations (3) one can derive the set of linear 
equations 

dz 2 
dt 4c~,Syy 

dY---~2 = -4ct-E-y - 4f12y --~ + 4f12x -'-5" (6) 
dt 

dy___~z = _2fl2)_ f + 2c~y 2 _ 2c~z 2 
dt 
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Using the condit ion x 2 + y2 + z 2 = 1, one can replace x 2 with 1 - y Z _  z 2 in 
the second of the above equations. For  any fl 4:0 one finds that the solu- 
tion converges to the s tat ionary solution x 2 =  y2=z2= I/3, ~ 'y=0.  This 
result says that  the localization probabil i ty of the system is itself a r andom 
quant i ty  both in the weak- and strong-interaction regions as long as fl 4: 0. 
Even for large times there are symmetr ic  fluctuations around z = 0. In fact, 
for large times, one has z 2 = 1/3 :~ ~2 = 0. 

In order to compute  the correlation function 

c(r) = lim z(s + r) z(s) ds (7) 

it is useful to remark that  the exponential  convergence to the stat ionary 
solution implies 

= r-~.lim z(s)Zds=-~ (8) 

and 

�9 1 r 
l~rn -T Io z(s) .v(s) ds=O (9) 

We preliminary compute  the mean correlation function c(z). This can 
be done by taking first the average z(s + ~) condit ioned to the initial value 
z(t). This is a trivial application of (5). The resulting expression is a linear 
combinat ion  of the integrals which appear  in (8) and (9) and the result is 
straightforward. Using the same procedure,  one shows that  [c ( r ) ] - '  = c(~) 2. 
The quanti ty c(r) is therefore nonrandom.  The result for f12< 2 I~1 is 

, [ ] c(r) = ~ e-a2~ cos(coz) + --o9 sin(o~r) (10) 

while for f12> 2 Ictl it is 

1 o2~ F /~2 ] 
c(z)  = ~ e - I '  [cosh(coz) + --~o sinh(coz) (! ! ) 

This provides clear evidence that  there are two regions�9 The first 
corresponds to a weak interaction with the environment.  The system still 
jumps  almost  periodically from one state to the other so that coherent 
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qUantum behavior survives. On the contrary, in the strong-interaction 
region, the most typical quantum phenomenon disappears. Surprisingly, 
the jump probability rate vanishes for very large fl so that, in the limit of 
extremely strong noise, the behavior of the system becomes "classical." This 
result leads to the important conclusion that the noise stabilizes the 
localization since the jump probability rate becomes 2et2/fl 2. 

The relevance of our model for the description of the quantum 
behavior of some mesoscopic systems stems from the fact that the control 
parameter/~2/l~l can be of the order of unity for these objects. The evalua- 
tion of the effective strength of the coupling with the environment becomes 
crucial. 

The inhibition of transition due to the coupling with the environment 
seems to be a typical behavior of quantum systems strongly interacting 
with macroscopic objects. This effect has been extensively studied in the 
relevant case of interaction with a macroscopic measuring device inducing 
consecutive wave packet collapses. The phenomenon is known as the 
quantum Zeno effect and it has been clearly evidenced both theoreti- 
cally~ 12,13,16, 171 and experimentally, t ~3.14) 

The model that we have introduced seems simple and rich enough to 
become a test model to check the properties of two-state mesoscopic 
systems. It seems also to be relevant in the quantum chaos problem when 
a quasiperiodic forcing replaces the stochastic noise, w'~~ The chaotic 
properties of the model in terms of information entropy are presently under 
investigation. I ~  
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